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The velocities and the associated pressure gradients of infinitely long liquid- 
borne cylinders flowing freely in pipes are related analytically to their radial 
positions. These velocities and pressure gradients are compared with those of 
liquids in cylinder-free pipes and expressed as ratios. A digital computer was 
used to evaluate the resultant equations for values of the cylinderlpipe diameter 
ratio between 0.25 and 0.97, with radial positions varying from the fully eccen- 
tric to the fully concentric position. As the clearance between the pipe and the 
bottom of the cylinder increases, the pressure ratio (R,) decreases and the velo- 
city ratio (R,) increases. The relationship between R, and R, is independent of 
liquid viscosity and density, capsule density and pipe diameter, and is shown to 
be nearly linear for the larger diameter ratios. The R, R relationships are compared 
with data from three experimental capsule pipelines with pipe diameters from 

to 4in., involving a variety of diameter ratios, cylinder lengths and densities, 
and oil viscosities. The experimental results for single capsules of finite length 
are shown to be in close agreement with the predictions for infinitely long 
cylinders. 

The relevance of the analysis to capsule pipelining is indicated by relating 
experimental values of capsule velocity over a wide range of densities to the 
theoretical clearance of the capsules. A general relationship of this type would 
permit the optimization of the power requirements of any particular throughput 
of a given commodity. 

I. Introduction 
Capsule pipelining is a concept of economical long distance solids transport 

whereby the solids are introduced into the pipeline in the form of a long train of 
cylinders or spheres with diameters approaching that of the pipe. The capsules, 
which may be rigid slugs, flexible bodies of coherent paste, or packaged commodi- 
ties, are carried along by the flowing liquid. 

The concept of capsule pipelining was discussed in detail by Hodgson & 
Charles (1963). This was followed by a theoretical analysis by Charles (1963) of 
the concentric flow of long cylinders in pipes. The velocities of cylindrical and 
spherical capsules with the same density as the water carrier and also with 
densities greater than the water carrier, were measured in a lain. laboratory 
pipeline and reported by Ellis ( 1 9 6 4 ~ )  as capsule/liquid velocity ratios. 

-f Parts 1 to 8 of this series have appeared in The Canadian  Journal of Chemical 
En,ginewing under the title ' The pipeline flow of capsules '. 
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Similar experiments were made using an oil carrier to investigate effects of 
viscosity (Ellis & Bolt 1964; Round & Bolt 1965). A numerical analysis of 
some variables determining free flow of cylinders in laminar flow was presented 
by Newton, Redberger & Round (1964). 

The design of commercial capsule pipelines requires a knowledge of liquid and 
capsule velocities and pressure gradients, and the present paper presents a means 
whereby these may be correlated. The first part of the paper consists of an ana- 
lytical analysis of the movement of infinitely long cylinders in laminar flow in 
pipes and extends the analysis by Newton et al. The present analysis has been 
tested against a great variety of experimental data derived from three pipelines 
of diameters from Q to 4in., and with cylindrical capsules of lengths from 3 in. to 
4ft. These supporting data are found in the second part of the paper. The clear- 
ance between the bottom of the cylinder and the pipe wall, rather than eccen- 
tricity, is adopted as the basic parameter throughout the paper since it is felt 
that this facilitates the application of lubrication theory to capsule flow and al- 
lows simpler comparisons between the theory and experimental measurements. 
Such practical matters as the effect of capsule density and surface roughness are 
also considered. 

2. Analysis of the flow of infinitely long cylinders in laminar flow 
The free flow of a cylinder in a pipe may be regarded as embracing a spectrum 

of positions of the cylinder bounded at the one limit by the concentric position 
and at  the other by the fully eccentric position. The flow may be divided into two 
parts, the movement of the cylinder, expressed as a volumetric flow rate Q, and 
the flow of the liquid in the annulus Qa. In  all cases for the movement of an in- 
finitely long cylinder we have: 

Q, = &nCl2E, 

where d = cylinder diameter and V,  = cylinder velocity. 

analytically by Charles (1963) and is given by 
Laminar flow in the annulus of a free-flowing concentric cylinder was treated 

ngD4 where B = - -  
108p’ 

(dP/dz), = pressure gradient per unit length of annulus, 

D = internal diameter of the pipe, 

p = absolute fluid viscosity, 

k = d/D. 

It may be shown that the concentric movement of the cylinder is given by 

Q c =  B - (1-k2)2k2. (3 
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Bentwich, Kelly & Epstein (1966) derived an analytical expression describing 
the laminar flow conditions in the annulus of a pipe with an infinitely long free- 
flowing cylinder: 

(1-k2)2+2k2e2-{8k~inh(a+P)} 

e = distance between the axes of the pipe and the cylinder expressed as a fraction 

n = integer. 
of the pipe radius, 

For the movement of the cylinder Bentwich et al. obtained: 

Q, = B - (4k3 sinh (a - p)}. (4) (3, 
Equations (3) and (4) simplify to (1) and (2) respectively for concentric cylinder 
flow but become indeterminate for fully eccentric cylinders. The case of a fully 
eccentric fixed cylinder was studied analytically by Caldwell (1930), and the 
flow rate is given by 

For a cylinder parallel to the pipe, the displacement, or eccentricity, E ,  im- 
plicit in (3) and (4), is the distance between the axes of the cylinder and the pipe 
expressed as a fraction of the pipe radius. This may be related to C, the minimum 
clearance between the pipe and cylinder walls, expressed as a fraction of the pipe 
diameter: 

E =  1-k-2C.  

It has been found convenient to relate the velocity of the liquid-borne cylinder 
to the bulk velocity of the liquid flowing in the cylinder-free pipe, the volumetric 
flow rates in the two systems being equal. Equality of volumetric flow rate means 
that the combined flow rate of the cylinder and the annular liquid is equal to the 
flow rate in the cylinder-free pipe. The velocity ratio may therefore be expressed 
as 

Similarly, the pressure ratio is defined as the pressure gradient in a pipe con- 
taining a cylinder, divided by the pressure gradient in a pipe without a cylinder 
for the same total volumetric flow rate. From (3) and (4) the flow rate of a cylin- 
der plus the liquid in the annulus is 

33-2 
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In a cylinder-free pipe the flow rate is 

dP 
QP = B i z ) , .  

where (dP /dz ) ,  = pressure gradient per unit length of pipe. Equating the flow 
in the free pipe with the flow of the cylinder plus the flow in the annulus (equations 
( 7 )  and (8)) gives the pressure ratio at  constant throughput 

On the other hand, equating the pressure gradients, instead of the flow rates, 
gives the flow ratio at constant pressure gradient 

Comparison of (9) and (10) shows that for a given capsule-pipe diameter ratio 
and clearance, the pressure ratio at  const,ant throughput is equal to  the flow 
ratio at  constant pressure gradient or 

The velocity ratio and the pressure ratio for a concentric, free-flowing cylinder 
were given by Charles (1963) and may also be obtained from (l), (2), (6), (8) and 
( 1  1). These are 

(12) 
2 

1 + k 2  R17(con) = - 

and 
Rp(con) = 1 

At the other limit the cylinder is fully eccentric and stationary and therefore 
the velocity ratio is zero. The pressure ratio may then be obtained from ( 5 ) ,  (8) 
and (11). The infinite series of (5) converges very slowly but may be conveniently 
evaluated by substituting specific values for k, i.e. k = (m- l ) /m,  where m is an 
integer. For these values the series may be simplified as follows: 

Table 1 shows a number of values of m, k and R, for fully eccentric cylinders; the 
values of R, for k equal to 0.100 and 0.300 have been evaluated by using the 
infinite series of ( 5 ) .  A curve fitted to these values (figure 5 )  yielded: 

which agrees within 2 yo or better with the analytical solution for values of k 
greater than 0.4. For smaller values of k the analytical solution needs to be evalu- 
ated. 
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The velocity ratio and pressure ratio between the two clearance extremes may 
be evaluated from (3),  (4), (6) and (11). For the present study, values of velocity 
ratio and pressure ratio were obtained for diameter ratios varying from 0.25 
to  0.97 for a number of cylinder clearances, C. Table 2 gives the values of the 
cylinder clearances for various values of a parameter N arbitrarily chosen for 
convenience of calculation. 

m 

1 

2 
3 
4 
5 

10 
20 

L 
0.000 
0.100 
0.300 
0.500 
0.667 
0.750 
0.800 
0.900 
0.950 

R P  

1.00 
1.06 
1.58 
3.42 
9.96 

22-2 
42.0 

316.0 
2462.0 

TABLE 1. Pressure ratios for fully eccentric cylinders evaluated from ( 5 ) ,  (8) and (11) 

2 N  c=-- 
1000 

2N c = -  
1000 

N pipe diameters N pipe diameters 

-9  1.953 x 10W 0 1.000 x 10-3 
-8 3-907 x 1 2.000 x 10-3 
-7 7.813 x 2 4.000 x 
-6  1.563 x 3 8.000 x 
-5 3.125 x 4 1-600 x 
-4 6.250 x 5 3.200 x 
-3 1.250 x lop4 6 6.400 x 
-2  2.500 x 10-4 7 1.280 x 10-1 
-1 5.000 x 8 2.560 x 10-1 

TABLE 2. Values of the clearances between cylinder and pipe wall used in the calculations 
and in figures 4-7 

The infinite series was summed (IBM 1620 computer) to obtain the velocity 
ratios and pressure ratios. At  large clearances the series converged rapidly and 
for values of N greater than - 3, eight-digit accuracy was used in the caIculation, 
the series being terminated when the last term became smaller than 10-6. At 
smaller clearances convergence was very slow; in some cases more than 1000 
terms were required to reach the new termination point of 10-1O. An accuracy of 
12 digits was used for the latter calcu1ations.t 

The efiect of clearance on  the velocity ratio 

Figure 1 shows, for a number of diameter ratios, the relation between clearance 
and velocity ratio. In  the one extreme, not shown in figure 1, all curves go to 
zero as C goes to zero and the cylinders are resting on the pipe wall. The other 
extreme represents concentric cylinders, i.e. maximum individual clearances. At  

A table of the calculated values may be obtained from the authors. 
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the maximum possible diameter ratio (1.0) the cylinder is a piston in the pipe 
and if it moves at  all, the velocity ratio is 1.0. For any diameter ratio less than 
1.0 the greater the clearance the greater the velocity ratio. This effect of clear- 
ance on the velocity ratio is more pronounced as the diameter ratio is decreased. 
This may be seen when comparing the curves for the 0-90 and 0-97 diameter 

15  - 

k 
I 

0.5 - 

1 -/ 0.0 , , , , , , ,,I , , , , ,,,,I , , , , I ,,,I , , , , ,,,,I , , , , , , , , I  , , , , , , 
10-6 10-5 10-4 10-3 10-2 lo-' 1.0 

C 

FIGURE 1. The predicted effect of clearance on the velocity ratio for 
diameter ratios from 0.25 to 0.97. 

ratios. The velocity ratio for the smaller diameter ratio is 50 % of that for the 
larger one at the smallest clearance shown but rises more rapidly and surpasses 
it at a clearance of 3.5 x 10-4 pipe diameters. All the graphs in the figure show 
this overtaking in velocity ratio of larger diameter ratios by smaller diameter 
ratios as the clearance increases. Such an overtaking was observed experimentally 
by Ellis (19646) for finite cylinders of different diameters as liquid velocities in- 
creased. In  these experiments an increase of clearance was visible when the 
velocity ratio was increased. 

Figure 2 shows the effect of clearance on the difference between the velocity 
ratio of a concentric cylinder and that of an eccentric cylinder of the same dia- 
meter ratio; both the ordinate and the abscissa are logarithmic scales. The new 
ordinate eliminates the intersecting curves of figure 1 and thereby simplifies 
estimating values of velocity ratio for intermediate diameter ratios.Velocity 
ratios for the commercially interesting larger diameter ratios may also be obtained 
more accurately by the use of figure 2. 
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C 

FIGURE 2. The predicted difference between the velocity ratios of a concentric cylinder 
and of an eccentric cylinder as a function of clearance for diameter ratios from 0.25 to 0.97. 

C 

FIGURE 3. The predicted effect of clearance on the pressure ratio for 
diameter ratios from 0.25 to 0.97. 
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The eflect of clearance on the pressure ratio 

The relation between clearance and pressure ratio is shown by figure 3 for a num- 
ber of diameter ratios. As may be seen when comparing the uppermost curves 
with the bottom curves, the pressure ratios for the large diameter ratios are much 
more dependent on clearance than are those for the small diameter ratios. 

2.0 

15 

1 .0 
& 

0.5 

0.0 1 1 1 1 I  I I 1 1 1 1 I  I I I 

0.0 0.7 0.9 097  
k 

FIGURE 4 

1000 

100 

2 

10 

1 

0.0 0.7 0.9 0.97 
k 

FIGURE 5 

FIGURE 4. The predicted effect of diameter ratio on the velocity ratio for a number of 
cylinder positions corresponding to the values of N given in table 2. 
FIGURE 5. The predicted effect of diameter ratio on the pressure ratio for st number of 
cylinder positions as given in table 2 .  

The curves in figures 1-3 terminate at  a clearance of about 2 x pipe dia- 
meters which is smaller than the relative roughness of drawn tubing. Undoubtedly 
in actual practice the pipe and cylinder roughnesses will affect the velocity 
ratios and pressure ratios at the smaller clearances. 

The effect of diameter ratio on the velocity ratio 

The effect of diameter ratio on the velocity ratio is shown in figure 4 for a number 
of cylinder clearances. The clearances are indicated by values of N as defined in 
table 2. The abscissa indicates values of Ic on a logarithmic scale of I/ (  1 - k). 
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The ends of the curves are not shown in figure 4. On the right-hand side they all 
meet at  a velocity ratio of 1.0 for a diameter ratio of 1.0. On the left-hand side 
the diameter ratio goes to zero and the velocity ratio becomes the velocity of an 
individual stream line for ideal laminar flow divided by the average liquid 

- I I I I I I I 7% I 

R, = SC( 1 - C). 

I I I I I I I 1 I 

'z 
\ 

- 3  >\  
* \  

-1 > \  
0 \  

* \  
1 \  . \  

\ \  

/Z = 050 

\ 
\ 
\ 

f?\ 

0.0 0.4 0.8 1.2 1.6 1.8 
Rv 

FIGURE 6. The predicted velocity ratios and pressure ratios for a 0.50 diameter ratio 
cyIinder for positions corresponding to the values of N given in table 2.  The fully eccentric 
and concentric positions are marked by circles and are joined by the dashed line. 

The curves show that for a given clearance there is a diameter ratio that gives the 
maximum velocity ratio for that clearance. During experimental pipeline flow 
studies of deformable cylinders of finite lengths Berkowitz, Brown & Jensen 
(1965) observed a deformation of the cylinders toward a constant diameter ratio 
of 0.80. It may well be that a connexion exists between the experimentally 
observed diameter deformation and the optimum diameter ratios of figure 4. 

The effect of diameter ratio on the pressure ratio 

The relation between diameter ratio and pressure ratio is shown in figure 5 for a 
number of cylinder positions. The uppermost curve represents the pressure ratio 
for fully eccentric cylinders at rest. The pressure ratio for such cylinders of any 
diameter ratio may be obtained for design purposes from (14). The bottom curve 
shows the pressure ratios for concentric cylinders flowing freely in the pipe. 

Relating the four variables 

Figure 6 is a plot of the pressure ratio versus the velocity ratio for various 
cylinder positions for a diameter ratio of 0-5. The circle on the y-axis represents 
the pressure ratio for a fully eccentric cylinder and the circle to the right on the 
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bottom of the figure represents the pressure and velocity ratios for a concentric 
cylinder. A straight dashed line is shown connecting the two extremes. Similar 
figures may be drawn for other diameter ratios and they all show a maximum 
difference of about 8 yo between the straight line and the points at  about the 
same clearance ( N  = 4). For the large diameter ratios, which show high pressure 
ratios at  the low clearances, the 8 yo difference at  small pressure ratios (at N = 4) 
is negligible when considering the over-all curve and then the R, versus R, 
curve may be approximated by the straight line. 

50 

40 

30 

3 
20 

10 

0 
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 

Rv 
FIGURE 7. The predicted velocity ratios and pressuro ratios for diameter ratios from 0.80 

to 0.90 for cylinder positions corresponding to the values of N given in table 2. 

Figure 7 is a composite velocity ratio, pressure ratio plot for a number of dia- 
meter ratios between 0.8 and 0-9. The curves intersect and the plot appears to be 
a projection of a three-dimensional surface. The third dimension is a function of 
clearance and diameter ratio. Figure 7 presents a useful basis for correlating 
experimental data since it is independent of liquid properties, capsule density and 
pipe diameter. It also incorporates in one figure four variables (Rp, R,, k and C) 
involved in the free flow of cylinders in pipes. When two variables are known, the 
other two may be predicted from the curves. This is especially useful in experi- 
mental work since the very small clearances may be difficult to measure to great 
accuracy, while accurate pressure and velocity ratios may often be determined 
more conveniently. However, it must be remembered that the curves refer to 
infinite cylinders flowing parallel to the pipe wall. In  practice, capsules are finite 
and have been observed by Ellis (19643) to flow in a slightly nose-up attitude. 
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3. Extending the prediction to turbulent flow in the free pipe 
The foregoing theoretical relationships have been developed on the basis of 

laminar flow in the capsule-pipe annulus and in the free pipe; it is now possible t o  
extend the theory to include a long cylinder in a pipe in which the liquid is in 
turbulent flow, but with the turbulence suppressed to give laminar flow in the 
cylinder-pipe annulus. 

If the cylinder is long enough that the pressure losses due to disturbances at 
the ends are negligible compared with the pressure drop along the cylinder, the 
pressure gradient and velocity of the cylinder will not be affected by the tur- 
bulence in the free pipe. Experimental data secured under these conditions may 
then be compared with the foregoing laminar theory provided that the liquid 
pressure gradient term (dP /dz )  in R, is calculated by the Hagen-Poiseuille 
equation, as if the liquid in the free pipe were in laminar flow at the existing 
liquid velocity. By this device the R,, R, curve shows no discontinuity as long 
as the flow in the annulus remains laminar, the pressure gradient being compared 
with that in a free laminar liquid stream as before. Since it has been found experi- 
mentally (Ellis 1964a) that capsules of large diameter ratio do suppress turbu- 
lence in the annulus to a marked degree, the range of usefulness of the theoretical 
predictions can be extended into the turbulent pipe-flow regime found in com- 
mercial pipelines. 

4. Experimental data 
Experimental data were obtained for cylindrical capsule flow in three pilot- 

scale pipelines (table 3) under a large variety of conditions of pipe size, diameter 
ratio, capsule length and density, and liquid viscosity. These data for finite 
cylinders were compared with the theoretical predictions for infinite cylinders. 

Liquid velocities were determined from calibrated flow meters, and capsule 
velocities from the transit time between two photocells. Liquid pressure gradients 
were correlated by means of a Reynolds number, friction factor plot. Capsule 
pressure gradients were calculated by measuring the increase in pressure due to 
the presence of the capsule in the test section, expressing this as a gradient by 
dividing it by the capsule length and then adding to this the measured liquid 
pressure gradient over the test section at the same flow rate, i.e. 

where A c  = the increase in pressure due to the capsule. L, = capsule length. 

Data from a 4 in. pipeline 

Figures 8 and 9 present experimental data for 24 and 3in. long cylinders re- 
spectively, flowing in a viscous lubricating oil (p = 36 cP., liquid S.G. (p )  = 0.86) 
in a 4 in. pipeline (table 3). Flow was laminar in the pipe for the complete range 
of liquid velocities used. Loaded hollow cylinders were used in the experiments to 
obtain data for the same cylinder surface at different cylinder specific gravities 
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(a). Three axes are used in the figures to represent a number of variables simul- 
taneously. Arrows on the curves refer to the axes used to represent the variables. 
The dependence of one variable on the other may be understood by following the 

Average internal pipe diameter in 
the test section (in.) 0.532 1.254 4.03 

Pipe material Copper Acrylic Steel 
Diameter tolerance (in.) 0.001 0-01 0.02.f 

Test section length (ft.) 8.00 10.00 20.00 
Upstream calming section (ft.) 12 21 110 
Downstream calming section (ft.) 3 3 G O  

(reamered) plastic 

f Estimated. 

TABLE 3. Pertinent data on the experimental capsule pipelines 

40 

30 

4 20 

10 

0 

R V  

0.3 0.4 0.5 0.6 0.7 0-8 0 9  1.0 1.1 1.2 

0 1 2  3 4 5 6 7 8 9 

v, 
FIGURE 8. The experimentally measured velocity ratio, pressure ratio and capsule velocity 
of a 24.0 in. long 0.824 diameter ratio capsule flowing in lubricating oil (p = 36 cP., 
p = 0.86) in a 0.532 in. diameter pipeline. The hollow cylindrical capsule was loaded to 
three specific gravities: A ,  2.03; 0, 5.01; x , 11-75. The straight line is the predicted 
Rp, Rv relationship for this diameter ratio and the curves are drawn by means of the 
correlation of figure 13. 

dashed lines in figure 8. The nearly straight line in both figures which re- 
presents the theoretical prediction for the velocity ratio versus pressure ratio at a 
diameter ratio of 0.824 is very close to the experimental points for both the 24in. 
(LJd = 55) and the 3 in. ( L J d  = 6.8) cylinders. Thus in this small diameter pipe 
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the effect of the cylinder ends, even on a cylinder as short as 3 in., does not cause 
much deviation from the theoretical R,, R, relationship for infinite cylinders. 

The curved lines in figure 8 and 9 which are plots of pressure ratio and velocity 
ratio versus capsule velocity will be discussed further on. 

Rv 

b 

FIGURE 9. Experimental data as for figure 8 but with a 3.0 in. long cylinder of specific 
gravity: A, 2.67; 0, 5.32; x , 10.0 respectively. 

Data from a l i i n .  pipeline 

Figure 10 presents experimental data relating to 18 and 24in. long hollow cylin- 
ders of three diameters, each cylinder being loaded to four specific gravities 
ranging from 1.92 to 7.84. The experiments were made in a lain. pipeline (table 
3) using a viscous lubricating oil (p = 28 cP., p = 0,855) with laminar flow in the 
free pipe at  all liquid velocities. The lines show the analytical prediction for the 
three diameter ratios of 0.90, 0.70 and 0.50 respectively. The experimental 
points from this pipeline are further removed from the analytical prediction 
than those from the smaller diameter pipeline but there is still surprisingly close 
agreement between the theory for an infinitely long cylinder and experimental 
data from these finite capsules ( L / d  = 16 or 21), especially when the variation in 
the internal pipe diameter through the test section (table 3) is taken into consider- 
ation. 

Four possible reasons may be cited for any discrepancies between data from 
cylindrical capsules and the theoretical predictions : (i) the experimental capsule 
is not infinite and may display end effects; (ii) the capsule axis is not parallel to 
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the pipe axis in most cases; (iii) when the capsule moves at very small clearances 
a friction force between the pipe wall and the capsule is introduced; and (iv) tur- 
bulence may be present in the annulus. Any one of these four conditions invali- 
dates the analytical model of an infinitely long free-flowing cylinder in laminar 
flow. It is also possible that these four causes of deviation may at  times compen- 
sate one another to give experimental data closer to the prediction than war- 
ranted. 

120 

80 

4 

20 

0 

0 0.2 0 4  0 6  08 1.0 1.2 

Rv 
FIGURE 10. The experimentally measured velocity ratios and pressure ratios of capsules 
18 in. long, 0.90 diameter ratio, 24 in. long, 0.70 diameter ratio and 24 in. long, 0.50 
diameter ratio, flowing in lubricating oil (y = 28 cP., p = 0.855) in a 1.25 in. diameter 
pipeline. The hollow cylindrical capsules were loaded to four specific gravities each, 
ranging from 1.92 to 7.84. 0 ,  k = 0.90, L, = 18 in.; A ,  k = 0.70, L, = 24 in.; v ,  .k = 
0.50, L, = 24 in. 

Figure 11 shows experimental data from 18in. solid steel, aluminium and 
acrylic plastic cylinders run in a light lubricating oil (p = 5.7 cP., p = 0.828) in 
the 12 in. pipeline. The closed symbols represent the pressure ratios calculated 
as in figures 8-10 directly from the experimentally measured capsule and liquid 
pressure gradients. The oil velocities in the experiment (2.23-1 1.55 ft./sec) 
represented turbulent flow in the free pipe (Reynolds numbers varied from 3140 
to 16,200), so that the analytical model of laminar flow both in the annulus and 
in the free pipe is no longer valid, and the experimental points are shown to 
deviate markedly from the line representing the analytical prediction. The open 
symbols in figure 11 ,which represent the pressure ratios calculated by means of 
the Hagen-Poiseuille equation, as explained previously, closely approach the 
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line showing the analytical prediction. However, when comparing these open 
symbols of figure 11 with the circles in figure 10, effects of some carry-over of 
turbulence from the free pipe into the annulus for the data involving the lighter 
oil are suggested by the higher pressure ratios over the whole range of velocit,y 
ratios. 

0.6 0.7 0.8 0.9 1.0 1.1 1.2 

Rv 
FIGURE 11. The experimentally measured velocity ratios and pressure ratios (shaded 
symbols) and the laminar-laminar pressure ratios calculated by means of the Hagen- 
Poiseuille equation (open symbols) of steel (circles), aluminium (triangles) and acrylic 
plastic (squares) 18 in. long, 0.90 diameter ratio capsules flowing in light lubricating oil 
(p = 5-7 cP., p = 0.83) in a 1.25 in. diameter pipeline. 

Data from a 4 in. pipeline 

Figure 12  presents experimental data from a pipeline made of commercial 4 in. 
diameter steel pipe (table 3). The capsule was a 48in. aluminium cylinder, dia- 
meter ratio 0.90 flowing in viscous transformer oil (p = 16-7 cP., p = 0.853). Flow 
in the pipe was laminar at  low liquid velocities but became turbulent at high 
velocities. Two symbols are used in the figure: crosses refer to the pressure ratios 
as calculated from the pressure gradients measured in the pipeline, and circles 
refer to the pressure ratios obtained when using laminar liquid pressure gradients 
to calculate the ratios as explained for the data of figure 11. Since the diameter 
ratio of the capsule in the test section depends on the variation of the inside dia- 
meter of the commercial pipe, which is not known exactly, the analytical predic- 
tions for diameter ratios of 0.91 and 0.89 are also given in the figure. 
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The theoretical clearances shown indicate that the thickness of the liquid layer 
under the capsule was very small. In  fact, in all cases these clearances were less 
than the relative roughness usually ascribed to 4in. commercial steel pipe 
( 4 . 5 ~  10-4). While the pipe is probably worn and has a much lower relative 
roughness, the deviation on the figure between the circles and the prediction may 
be partly due to friction between the solid surfaces. 

RV 

FIGURE 12. The experimentally measured velocity ratios and pressure ratios (crosses) 
and the laminar-laminar pressure ratios calculated by means of the Hagen-Poiseuille 
equation (circles) of a 48 in. long, 0.90 diameter ratio aluminium (r = 2.71) cylindrical 
capsule flowing in transformer oil (p = 16.7 oP., p = 0.853) in a 4.03 in. diameter pipe- 
line. 

It should be pointed out that theoretical clearances are used as the basis of 
the figures and that no attempt has been made as yet to measure clearances 
experimentally. The phenomenon of clearance between the cylinder and the 
pipe wall has been compared with that of the liquid wedge in a slipper bearing by 
Ellis (19646). Undoubtedly the clearance between the moving cylinder and the 
pipe wall is not uniform over the capsule and in most cases is largest at  the nose 
and smallest at  the tail. 

The scale, inserted at  the bottom of figure 12, provides the relationship 
between the velocity ratio and pressure ratio of this particular capsule and 
the liquid velocity. For example, increasing the liquid velocity from 2-0 to 
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5.0 ft./sec results in a decrease in the measured pressure ratio from 39 to 7. The 
capsule veIocity increases concurrentIy from 1.7 to 4-9 ft./sec, yielding nearly 
three times the throughput of aluminium. 

5. Effect of the capsule specific gravity and velocity on clearance 
Curves relating clearance to R, and R, have been presented in figures 1 and 

3. If  similar curves are drawn for the diameter ratio of figures 8 and 9, values of 
clearance can be read off corresponding to the measured values of R, and R,. 

I I 1  I )  I 1  I 

C 

FIGURE 13. The experimentally measured capsule velocity as a function of the theoretical 
clearance of the 24.0in. long, 0.824 diameter ratio capsule of figure 8. The theoretical 
clearances were obtained from a plot similar to figure 1 (circles) and also from a plot 
similar to figure 3 (crosses). I) = 0.532 in., p = 0.86, ,u = 36 cP. 

In figures 13 and 14 these clearances are plotted for the data from the Qin. 
pipeline against the corresponding capsule velocities. The circles in the figures 
refer to the clearance obtained from the R, curve and the crosses refer to the 
clearance obtained from the R, curve. It is evident that for any one capsule 
there is a close relationship between the capsule velocity and the theoretical 
clearance, whether the latter is obtained from the velocity ratio or the pressure 
ratio. Straight parallel lines drawn through the S-curves of figure 13 result 
in an empirical correlation for the clearance as a function of the cylinder velocity 
and specific gravity. Deviation from the straight line becomes very apparent for 
the most dense capsule at a clearance of about 2 x the dimension of the 
relative roughness of ‘smooth’ $in. diameter pipes. It is probable that in the 
experimental runs roughnesses at  the cylinder and pipe walls had an adverse 
effect on the capsule movement at  these small clearances. In  figure 14 where the 
fit is much more linear, the best straight line was drawn through the points for 
each specific gravity. When comparing figures 13 and 14 it may be interesting to 
note that a change in specific gravity generally tends to cause a parallel shift 
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of the straight lines while the effect of cylinder length is to change the slope of the 
lines. 

I I I 

10 - 

S" 
1.0 - - 

I I 
10-j 1 0-4 10-3 10-2 10-1 

0 1  

C 

FIGURE 14. A plot similar to figure 13 but for the 3.0 in. capsule of figure 9. 
D = 0.532 in., k = 0.824, L, = 3.0 in., p = 0.86, ,U = 36 cP. 

6. Estimation of velocities and power requirements for capsule trains 

Since for the long cylinders (figure 13) the straight lines give a simple relation- 
ship between clearance, cylinder velocity and specific gravity, such a relationship 
derived for a long capsule may be used t o  obtain a practical estimate of the pres- 
sures, velocities and power requirements for the movement of capsule trains 
assuming these will behave as if they were a single long capsule. Such a prediction 
would involve the following steps. 

(i) The cylinder velocity is calculated from the desired solids throughput, the 
percentage of pipeline length occupied by capsules and trial capsule and pipe 
diameters. 

(ii) A clearance is obtained from a correlation such as presented in figures 13 
and 14. 

(iii) The pressure ratio and the velocity ratio are obtained from theoretical 
plots such as presented in figures 1 and 3. 

The curves in figures 8 and 9 were derived in this way for the cylinder specific 
gravities and lengths tested experimentally. The differences on the figures be- 
tween the experimental points and the curves give some indication of the pre- 
cision of such an estimate. Further steps required to obtain the capsule pressure 
gradient are the following. 

(iv) The liquid bulk velocity is calculated from the velocity ratio and the capsule 
velocity; and the laminar liquid pressure gradient is calculated from the liquid 
velocity and viscosity and the pipe diameter by means of the Hagen-Poiseuille 
equations. 

(v) The capsule pressure gradient is calculated from the pressure ratio and the 
liquid pressure gradient. 

Finally, power requirements are calculated by the conventional means from 
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the total volumetric flow and the total pressure drop in the pipeline; the latter is 
obtained by summing the capsule pressure drops over each capsule and the 
liquid pressure drops over each space between capsules. Power per unit through- 
put can be optimized by selecting other diameter ratios or pipe diameters and 
recalculating the power requirements. If the capsule bulk specific gravity can 
be varied (e.g. by foaming) it may be used also as a means of optimizing power per 
mass throughput. 

7. Conclusions 
Although almost continuous trains of capsules would be employed in commer- 

cial capsule pipelines the performance of a single long cylinder provides a theore- 
tical criterion against which the performance of a train of capsules can be judged. 
Experimental data from a large number of single capsules run in experimental 
capsule pipelines from +in. to  4 in. in diameter show that good agreement exists 
between the analytical prediction and experimental data as long as liquid in the 
capsule-pipe annulus is in laminar flow and as long as clearances are large 
enough to maintain free-flow of the capsule. 

An experimental relation between cylinder velocity and theoretical clearances 
suggests an approach whereby the many variables in capsule flow may be corre- 
lated. For when the capsule velocity and the theoretical clearance of a required 
capsule system are known, liquid velocity, pipeline pressure gradient and horse- 
power may be predicted and optimized. 
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